Track More Signals for the Most Robust Low-Power, Multi-Frequency, Multi-GNSS Solution

Track more signals for unparalleled positioning performance with Hemisphere GNSS’ new Eclipse P326 and P327 OEM modules. The latest technology platform enables simultaneous tracking of all satellite signals including GPS, GLONASS, BeiDou, Galileo, and L-band (QZSS ready) making it the most robust and reliable solution. The updated power management system efficiently governs the processor, memory, and ASIC making it ideal for multiple integration applications including handheld and battery-powered devices.

Experience Unparalleled Accuracy and Reliability with Advanced Technology Features

The P326 and P327 are the most accurate and reliable OEM modules with two new advanced technology features; aRTK™ and Tracer™. Hemisphere’s aRTK technology, powered by Atlas, allows the P326 and P327 to operate with RTK accuracies when RTK corrections fail. Tracer utilizes specialized algorithms to sustain positioning in the absence of corrections data.

Scalable Solutions

With the Eclipse P326 and P327, positioning is scalable and field upgradeable with all Hemisphere software and service options. Use the same centimeter-level accuracy in either single frequency mode, or employ the full performance and fast RTK initialization times over long distances with multi-frequency, multi-constellation GNSS signals. High-accuracy L-band positioning from meter to sub-decimeter levels available via Atlas correction service.

Ease of Migration

Leverage the compact size and easy integration in your design. The 34-pin P326 module is a drop-in upgrade for many Hemisphere products. P327 is a drop-in upgrade for existing designs using standard 20-pin modules from other manufacturers.

Key Features

- Multi-Frequency GPS, GLONASS, BeiDou, Galileo and QZSS-ready
- Long-range RTK baselines up to 50 km with fast acquisition times
- Compatible with many RTK sources including Hemisphere GNSS’ ROX format, RTCM, CMR, CMR+
- Mechanically and electrically (pin-for-pin) compatible with many Hemisphere and other manufacturers’ modules
- Atlas® L-band capable to 4 cm RMS
- Athena™ GNSS engine providing best-in-class RTK performance
GNSS Receiver Specifications

Receiver Type:
Multi-Frequency GPS, GLONASS, BeiDou, Galileo, QZSS, and Atlas

Signals Received:
GPS L1CA/L1P/L1C/L2P/L2C/L5
GLONASS G1/G2, P1/P2
BeiDou B1/B2 (B3 separate variant without L5)
Galileo E1B/C/E5a/E5b
QZSS L1CA/L2C/L5/L1C
Atlas

Channels:
- **P326/P327 (L5):** 572
- **P326/P327 (B3):** 488

GPS Sensitivity:
-142 dBm

SBAS Tracking:
3-channel, parallel tracking

Update Rate:
1 Hz standard, 10 Hz, 20 Hz, or 50 Hz optional (with activation)

Timing (1 PPS):

- **Accuracy:** 20 ns
- **Cold Start:** 60 s typical (no almanac or RTC)
- **Warm Start:** 30 s typical (almanac and RTC)
- **Hot Start:** 10 s typical (almanac, RTC and position)

Antenna Input Impedance: 50 Ω

Maximum Speed: 1,850 mph (999 kts)

Accuracy

- **Positioning:**
 - Autonomous, no SA: 1.2 m RMS (67%) 2.5 m 2DRMS (95%)
 - SBAS: 0.3 m 0.6 m
 - Atlas H10: 0.04 m 0.08 m
 - Atlas H30: 0.15 m 0.3 m
 - Atlas Basic: 0.50 m 1.0 m
 - RTK: 8 mm + 1 ppm 15 mm + 2 ppm

Environmental Operating Temperature:
-40°C to +85°C (-40°F to +185°F)

Storage Temperature:
-40°C to +85°C (-40°F to +185°F)

Humidity:
95% non-condensing (when in an enclosure)

Mechanical Shock:
EP455 Section 5.14.1
Operational (when mounted in an enclosure with screw mounting holes utilized)

Vibration:
EP455 Section 5.15.1 Random

EMC:
CE (IEC 60945 Emissions and Immunity)
CISPR 22

L-Band Receiver Specifications

Receiver Type: Single Channel

Channels: 1525 to 1560 MHz

Sensitivity: -130 dBm

Channel Spacing: 5.0 kHz

Satellite Selection: Manual and Automatic

Reacquisition Time: 15 seconds (typical)

1. Depends on multipath environment, number of satellites in view, satellite geometry, and ionospheric activity
2. Depends on multipath environment, number of satellites in view, SBAS coverage, satellite geometry, and ionospheric activity
3. Hemisphere GNSS proprietary
4. With future firmware upgrade and activation
5. CMR and CMR+ do not cover proprietary messages outside of the typical standard